By Topic

MEMS Vertical Probe Cards With Ultra Densely Arrayed Metal Probes for Wafer-Level IC Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, Fei ; State Key Lab. of Transducer Technol., Chinese Acad. of Sci., Shanghai, China ; Rong Cheng ; Xinxin Li

We have developed a MEMS probe-card technology for wafer-level testing ICs with 1-D line-arrayed or 2-D area-arrayed dense pads layouts. With a novel metal MEMS fabrication technique, an area-arrayed tip matrix is realized with an ultradense tip pitch of 90 mum times196 mum for testing 2-D pad layout, and a 50-mum minimum pitch is also achieved in line-arrayed probe cards for testing line-on-center or line-on-perimeter wafers. By using the anisotropic etching properties of single-crystalline silicon, novel oblique concave cavities are formed as electroplating moulds for the area-arrayed microprobes. With the micromachined cavity moulds, the probes are firstly electroplated in a silicon wafer and further flip-chip packaged onto a low-temperature cofired ceramic board for signal feeding to an automatic testing equipment. The microprobes can be efficiently released using a silicon-loss technique with a lateral underneath etching. The measured material properties of the electroplated nickel and the Sn-Ag solder bump are promising for IC testing applications. Mechanical tests have verified that the microprobes can withstand a 65-mN probing force, while the tip displacement is 25 mum, and can reliably work for more than 100 000 touchdowns. The electric test shows that the probe array can provide a low contact resistance of below 1 Omega, while the current leakage is only 150 pA at 3.3 V for adjacent probes.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 4 )