Cart (Loading....) | Create Account
Close category search window
 

Optimization-Based Dynamic Sensor Management for Distributed Multitarget Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tharmarasa, R. ; Dept. of Electr. & Comput. Eng. (ECE), McMaster Univ., Hamilton, ON, Canada ; Kirubarajan, T. ; Jiming Peng ; Lang, T.

In this paper, the general problem of dynamic assignment of sensors to local fusion centers (LFCs) in a distributed tracking framework is considered. With technological advances, a large number of sensors can be deployed for multitarget tracking purposes. However, due to physical limitations such as frequency, power, bandwidth, and fusion center capacity, only a limited number of them can be used by each LFC. The transmission power of future sensors is anticipated to be software controllable within certain lower and upper limits. Thus, the frequency reusability and the sensor reachability can be improved by controlling transmission powers. Then, the problem is to select the sensor subsets that should be used by each LFC and to find their transmission frequencies and powers in order to maximize the tracking accuracies and minimize the total power consumption. The frequency channel limitation and the advantage of variable transmitting power have not been discussed in the literature. In this paper, the optimal formulation for the aforementioned sensor management problem is provided based on the posterior Cramer-Rao lower bound. Finding the optimal solution to the aforementioned NP-hard multiobjective mixed-integer optimization problem in real time is difficult in large-scale scenarios. An algorithm is presented to find a suboptimal solution in real time by decomposing the original problem into subproblems, which are easier to solve, without using simplistic clustering algorithms that are typically used. Simulation results illustrating the performance of sensor array manager are also presented.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:39 ,  Issue: 5 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.