By Topic

DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications—Polynomial Control Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Camara, M.B. ; Groupe de Rech. en Electrotech. et Autom. du Havre Lab., Univ. of Le Havre, Le Havre, France ; Gualous, H. ; Gustin, F. ; Berthon, A.
more authors

This paper presents supercapacitor (SCAP) and battery modeling with an original energy management strategy in a hybrid storage technology. The studied dc power supply is composed of SCAPs and batteries. SCAPs are dimensioned for peak power requirement, and batteries provide the power in steady state. A bidirectional dc/dc converter is used between SCAPs and the dc bus. Batteries are directly connected to the dc bus. The originality of this study is focused on SCAP behavior modeling and energy management strategy. The proposed strategy is based on a polynomial (RST) controller. For reasons of cost and existing components (not optimized) such as batteries and semiconductors, the experimental test benches are designed in reduced scale. The characterized packs of SCAPs include two modules of ten cells in series for each one and present a maximum voltage of 27 V. The proposed strategy is implemented on a PIC18F4431 microcontroller for two dc/dc converter topology controls. Experimental and simulation results obtained from the polynomial control strategy are presented, analyzed, and compared with that of classical proportional-integral control.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 2 )