By Topic

Measuring the Resilience of the Trans-Oceanic Telecommunication Cable System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Omer, M. ; Centre of Complex Adaptive Sociotechnological Syst. (COMPASS), Stevens Inst. of Technol., Hoboken, NJ, USA ; Nilchiani, R. ; Mostashari, A.

Resilience is the ability of the system to both absorb shock as well as to recover rapidly from a disruption so that it can return back to its original service delivery levels or close to it. The trans-oceanic telecommunication fiber-optics cable network that serves as the backbone of the internet is a particularly critical infrastructure system that is vulnerable to both natural and man-made disasters. In this paper, we propose a model to measure the base resiliency of this network, and explore the node to node and the overall resiliency of the network using existing data for demand, capacity and flow information. The submarine cable system is represented by a network model to which hypothetical disruptions can be introduced. The base resiliency of the system can be measured as the ratio of the value delivery of the system after a disruption to the value deliver of the system before a disruption. We further demonstrate how the resiliency of the trans-oceanic telecommunication cable infrastructure is enhanced through vulnerability reduction.

Published in:

Systems Journal, IEEE  (Volume:3 ,  Issue: 3 )