Cart (Loading....) | Create Account
Close category search window

Design and Implementation of a Field Programmable CRC Circuit Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Toal, C. ; ECIT-Queen''s Univ. Belfast, Belfast, UK ; McLaughlin, K. ; Sezer, S. ; Xin Yang

The design and implementation of a programmable cyclic redundancy check (CRC) computation circuit architecture, suitable for deployment in network related system-on-chips (SoCs) is presented. The architecture has been designed to be field reprogrammable so that it is fully flexible in terms of the polynomial deployed and the input port width. The circuit includes an embedded configuration controller that has a low reconfiguration time and hardware cost. The circuit has been synthesised and mapped to 130-nm UMC standard cell [application-specific integrated circuit (ASIC)] technology and is capable of supporting line speeds of 5 Gb/s.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 8 )

Date of Publication:

Aug. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.