By Topic

Control strategies of doubly fed induction generators to support grid voltage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. B. C. Salles ; Laboratory of Applied Electromagnetism - LMAG, University of São Paulo, Brazil ; J. R. Cardoso ; A. P. Grilo ; C. Rahmann
more authors

The use of wind power has been increasing very fast in the last 10 years. Many new projects for the next 10 years including offshore and onshore wind farms are been developed and planned. The fast growing of the use of wind power has brought new challenges to the Transmission System Operators (TSO) in regions where wind power has reached significant penetration levels like Denmark, United Kingdom, Spain and Germany. According to new grid code requirements wind turbines must remain connected to the grid during grid disturbances and, moreover, they must also contribute to voltage support during and after grid faults. Dynamic models of doubly fed induction generator (DFIG) were developed to investigate the behavior off different converter control and protection strategies of the back-to-back IGBT-based converters during grid fault. The results have showed that reactive power injection by DFIG-based wind farms is limited when the rotor side converter is blocked.

Published in:

Electric Machines and Drives Conference, 2009. IEMDC '09. IEEE International

Date of Conference:

3-6 May 2009