By Topic

Coherent ultrashort light pulse code-division multiple access communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salehi, J.A. ; Bellcore, Morristown, NJ, USA ; Weiner, A.M. ; Heritage, J.P.

A new technique for encoding and decoding of coherent ultrashort light pulses is analyzed. In particular, the temporal and statistical behavior of pseudonoise bursts generated by spectral phase coding of ultrashort optical pulses is discussed. the analysis is motivated by recent experiments that demonstrate high-resolution spectral phase coding of picosecond and femtosecond pulses and suggest the possibility of ultrahigh speed code-division multiple-access (CDMA) communications using this technique. The evolution of coherent ultrashort pulses into low intensity pseudonoise bursts as a function of the degree of phase coding is traced. The results are utilized to analyze the performance of a proposed CDMA optical communications system based upon encoding and decoding of ultrashort light pulses. The bit error rate (BER) is derived as a function of data rate, number of users, and receiver threshold, and the performance characteristics are discussed for a variety of system parameters. It is found that performance improves greatly with increasing code length

Published in:

Lightwave Technology, Journal of  (Volume:8 ,  Issue: 3 )