Cart (Loading....) | Create Account
Close category search window
 

Reinforcement Learning for Load Management in DiffServ-MPLS Mobile Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vucevic, N. ; Dept. TSC, Univ. Politec. de Catalunya (UPC), Barcelona ; Perez-Romero, J. ; Sallent, O. ; Agusti, R.

Cognitive networks are envisaged to provide optimized resource usage in future. While heterogeneity and resource scarcity draw research attention to the wireless part, the rest of the network (mobile backhaul) is rarely considered for these improvements. The future of next generation wireless networks is probable to be all-IP, where a common flexible infrastructure is looking for dynamic autonomous solutions that cognition may provide. This work proposes a novel solution, where the introduction of reinforcement learning over multiprotocol label switching (MPLS) in a differentiated services (DiffServ) mobile backhaul should provide autonomous network adaptation aiming at enhanced QoS capabilities. The proposed solution enables intelligent traffic routing by means of distributed reinforcement learning agents that base decisions on edge-gained experience.

Published in:

Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th

Date of Conference:

26-29 April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.