By Topic

Tide Table Digit Recognition Based on Wavelet-Grid Feature Extraction and Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuang Liu ; Coll. of Comput. Sci. & Eng., Dalian Nat. Univ., Dalian ; Peng Chen

To be represented in tabular form and graphical format in ship electronic navigation system, printing tidal material must be processed into textual information, which is completed by an automatic tide table recognition module consisting of a feature extractor and a classifier. In feature extraction, a new wavelet part grid feature is defined based on wavelet's directive characteristics. In classification phase, multi-class SVM classifier is used instead of neural networks. Experiments show that the wavelet grid feature has good stability and satisfactory distinction, and SVM classifiers have better generalization performance than that of neural networks.

Published in:

Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on

Date of Conference:

23-24 May 2009