By Topic

Performance analysis of optical heterodyne PSK receivers in the presence of phase noise and adjacent channel interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Zaccarin ; Dept. of Electr. Eng., Laval Univ., Que., Canada ; D. Angers ; T. H. Huynh

A phase-shift-keying (PSK) optical heterodyne receiver using synchronous detection by means of a Costas phase-locked loop (PLL) is investigated. Taking into account the laser phase noise and adjacent channel interference (ACI), an expression of the phase error variance is derived and error probability calculation is performed. Plots of the error probability versus the number of photons per bit are presented as a function of the optical domain channel spacing (D) and for several linewidth-to-bit-rate ratios (δf/Rb ). Relative sensitivity penalties, based on the performance with and without ACI, are evaluated for several combinations of D and δf/Rb. It is shown that, if lasers with larger linewidths are used, the frequency separation between optical carriers has to be increased in order to allow the same relative sensitivity penalty

Published in:

Journal of Lightwave Technology  (Volume:8 ,  Issue: 3 )