By Topic

Real-Time Freeway Traffic State Estimation Based on Cluster Analysis and Multiclass Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao Deng ; Dept. of Comput., Dalian Univ. of Technol. Dalian, Dalian ; Fan Wang ; Huimin Shi ; Guozhen Tan

Urban traffic state analysis plays an important role in the solution of traffic congestion problem. To estimate traffic state effectively is a foundational work for improving traffic condition and preventing traffic congestion. In this paper, a novel pattern-based approach is proposed to model the clustering and classification of traffic state. First, fuzzy-set clustering method is utilized to divide the traffic state into a number of patterns. Then multiclass support vector machine (MSVM) is applied to estimate these states with real-time traffic data. The result shows that the proposed approach is promising for the dynamic estimation of road traffic state and can provide forecasted congestion information for the traffic control system and traffic guidance system.

Published in:

Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on

Date of Conference:

23-24 May 2009