By Topic

Estimating the Number of Clusters via System Evolution for Cluster Analysis of Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaijun Wang ; Sch. of Math. & Comput. Sci., Fujian Normal Univ., Fuzhou, China ; Jie Zheng ; Junying Zhang ; Dong, Jiyang

The estimation of the number of clusters (NC) is one of crucial problems in the cluster analysis of gene expression data. Most approaches available give their answers without the intuitive information about separable degrees between clusters. However, this information is useful for understanding cluster structures. To provide this information, we propose system evolution (SE) method to estimate NC based on partitioning around medoids (PAM) clustering algorithm. SE analyzes cluster structures of a dataset from the viewpoint of a pseudothermodynamics system. The system will go to its stable equilibrium state, at which the optimal NC is found, via its partitioning process and merging process. The experimental results on simulated and real gene expression data demonstrate that the SE works well on the data with well-separated clusters and the one with slightly overlapping clusters.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 5 )