By Topic

The Pseudotemporal Bootstrap for Predicting Glaucoma From Cross-Sectional Visual Field Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Allan Tucker ; School of Information Systems Computing and Maths, Brunel University, Uxbridge, U.K. ; David Garway-Heath

Progressive loss of the field of vision is characteristic of a number of eye diseases such as glaucoma, a leading cause of irreversible blindness in the world. Recently, there has been an explosion in the amount of data being stored on patients who suffer from visual deterioration, including visual field (VF) test, retinal image, and frequent intraocular pressure measurements. Like the progression of many biological and medical processes, VF progression is inherently temporal in nature. However, many datasets associated with the study of such processes are often cross sectional and the time dimension is not measured due to the expensive nature of such studies. In this paper, we address this issue by developing a method to build artificial time series, which we call pseudo time series from cross-sectional data. This involves building trajectories through all of the data that can then, in turn, be used to build temporal models for forecasting (which would otherwise be impossible without longitudinal data). Glaucoma, like many diseases, is a family of conditions and it is, therefore, likely that there will be a number of key trajectories that are important in understanding the disease. In order to deal with such situations, we extend the idea of pseudo time series by using resampling techniques to build multiple sequences prior to model building. This approach naturally handles outliers and multiple possible disease trajectories. We demonstrate some key properties of our approach on synthetic data and present very promising results on VF data for predicting glaucoma.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:14 ,  Issue: 1 )