By Topic

Consensus-Based Decentralized Auctions for Robust Task Allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han-Lim Choi ; Dept. of Aeronaut. & Astronaut., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Brunet, L. ; How, J.P.

This paper addresses task allocation to coordinate a fleet of autonomous vehicles by presenting two decentralized algorithms: the consensus-based auction algorithm (CBAA) and its generalization to the multi-assignment problem, i.e., the consensus-based bundle algorithm (CBBA). These algorithms utilize a market-based decision strategy as the mechanism for decentralized task selection and use a consensus routine based on local communication as the conflict resolution mechanism to achieve agreement on the winning bid values. Under reasonable assumptions on the scoring scheme, both of the proposed algorithms are proven to guarantee convergence to a conflict-free assignment, and it is shown that the converged solutions exhibit provable worst-case performance. It is also demonstrated that CBAA and CBBA produce conflict-free feasible solutions that are robust to both inconsistencies in the situational awareness across the fleet and variations in the communication network topology. Numerical experiments confirm superior convergence properties and performance when compared with existing auction-based task-allocation algorithms.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )