By Topic

Support Vector Clustering of Electrical Load Pattern Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chicco, G. ; Dipt. di Ing. Elettr., Politec. di Torino, Torino, Italy ; Ilie, I.-S.

This paper presents an original and effective application of support vector clustering (SVC) to electrical load pattern classification. The proposed SVC-based approach combines the calculation of the support vectors, carried out by using a classical procedure adopting a Gaussian kernel, with a specifically developed deterministic algorithm to form the clusters. This algorithm exploits the meaningful location of the bounded support vectors (BSVs) to define the outliers, identifying the clusters in function of the distance of the non-BSVs to the BSVs. Its implementation is less computationally intensive than other existing approaches and the cluster formation is driven by a single user-defined threshold. Extended comparison to other clustering methods is included to show the effectiveness of the proposed approach in grouping multidimensional load pattern data into non-overlapping clusters. This effectiveness is confirmed by the calculation of various cluster validity indicators. In particular, the most successful tasks are the identification of the outliers and the more effective formation of small numbers of clusters with respect to other methods.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 3 )