By Topic

Stochastic Traffic Engineering in Multihop Cognitive Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Song ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Chi Zhang ; Yuguang Fang

In this work, the stochastic traffic engineering problem in multihop cognitive wireless mesh networks is addressed. The challenges induced by the random behaviors of the primary users are investigated in a stochastic network utility maximization framework. For the convex stochastic traffic engineering problem, we propose a fully distributed algorithmic solution which provably converges to the global optimum with probability one. We next extend our framework to the cognitive wireless mesh networks with nonconvex utility functions, where a decentralized algorithmic solution, based on learning automata techniques, is proposed. We show that the decentralized solution converges to the global optimum solution asymptotically.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 3 )