Cart (Loading....) | Create Account
Close category search window
 

Closeness: A New Privacy Measure for Data Publishing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ninghui Li ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Tiancheng Li ; Venkatasubramanian, S.

The k-anonymity privacy requirement for publishing microdata requires that each equivalence class (i.e., a set of records that are indistinguishable from each other with respect to certain “identifying” attributes) contains at least k records. Recently, several authors have recognized that k-anonymity cannot prevent attribute disclosure. The notion of ℓ-diversity has been proposed to address this; ℓ-diversity requires that each equivalence class has at least ℓ well-represented (in Section 2) values for each sensitive attribute. In this paper, we show that ℓ-diversity has a number of limitations. In particular, it is neither necessary nor sufficient to prevent attribute disclosure. Motivated by these limitations, we propose a new notion of privacy called “closeness.” We first present the base model t-closeness, which requires that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table (i.e., the distance between the two distributions should be no more than a threshold t). We then propose a more flexible privacy model called (n,t)-closeness that offers higher utility. We describe our desiderata for designing a distance measure between two probability distributions and present two distance measures. We discuss the rationale for using closeness as a privacy measure and illustrate its advantages through examples and experiments.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.