By Topic

DMILL, a mixed analog-digital radiation-hard BICMOS technology for high energy physics electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

30 Author(s)
Dentan, M. ; CEA, Centre d'Etudes Nucleaires de Saclay, Gif-sur-Yvette ; Abbon, P. ; Delagnes, E. ; Fourches, N.
more authors

High Energy Physics experiments under preparation at CERN (Geneva, Switzerland) with the future LHC (Large Hadron collider) require a fast, low noise, very rad-hard, mixed analog-digital microelectronics VLSI technology. Readout electronics designed using such a technology for the central parts of the LHC particle detectors must withstand more than 10 Mrad (SiO2) and 1014 neutrons/cm2 over 10 years of operation. We present here recent results obtained with a new rad-hard analog-digital technology called DMILL, which monolithically integrates NPN bipolar, CMOS and P-JFET transistors, and which has been specifically developed to fulfill the severe constraints of LHC detector readout circuits

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 3 )