By Topic

BLAST Application with Data-Aware Desktop Grid Middleware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haiwu He ; INRIA, ENS Lyon, Lyon ; Fedak, G. ; Bing Tang ; Cappello, F.

There exists numerous Grid middleware to develop and execute programs on the computational Grid, but they still require intensive work from their users. BitDew is made to facilitate the usage of large scale Grid with dynamic, heterogeneous, volatile and highly distributed computing resources for applications that require a huge amount of data processing. Data-intensive applications form an important class of applications for the e-Science community which require secure and coordinated access to large datasets, wide-area transfers and broad distribution of TeraBytes of data while keeping track of multiple data replicas. In genetic biology, gene sequences comparison and analysis are the most basic routines. With the considerable increase of sequences to analyze, we need more and more computing power as well as efficient solution to manage data. In this work, we investigate the advantages of using a new Desktop Grid middleware BitDew, designed for large scale data management.Our contribution is two-fold: firstly, we introduce a data-driven Master/Slave programming model and we present an implementation of BLAST over BitDew following this model, secondly, we present extensive experimental and simulation results which demonstrate the effectiveness and scalability of our approach. We evaluate the benefit of multi-protocol data distribution to achieve remarkable speedups, we report on the ability to cope with highly volatile environment with relative performance degradation, we show the benefit of data replication in Grid with heterogeneous resource performance and we evaluate the combination of data fault tolerance and data replication when computing on volatile resources.

Published in:

Cluster Computing and the Grid, 2009. CCGRID '09. 9th IEEE/ACM International Symposium on

Date of Conference:

18-21 May 2009