Cart (Loading....) | Create Account
Close category search window
 

The Eucalyptus Open-Source Cloud-Computing System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Nurmi, D. ; Comput. Sci. Dept., Univ. of California, Santa Barbara, MD ; Wolski, R. ; Grzegorczyk, C. ; Obertelli, G.
more authors

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary, rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this work, we present Eucalyptus - an open-source software framework for cloud computing that implements what is commonly referred to as infrastructure as a service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. We outline the basic principles of the Eucalyptus design, detail important operational aspects of the system, and discuss architectural trade-offs that we have made in order to allow EUCALYPTUS to be portable, modular and simple to use on infrastructure commonly found within academic settings. Finally, we provide evidence that EUCALYPTUS enables users familiar with existing grid and HPC systems to explore new cloud computing functionality while maintaining access to existing, familiar application development software and grid middleware.

Published in:

Cluster Computing and the Grid, 2009. CCGRID '09. 9th IEEE/ACM International Symposium on

Date of Conference:

18-21 May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.