By Topic

Modelling and controller design of an isolated diesel engine permanent magnet synchronous generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rahman, M.A. ; Fac. of Eng. & Appl. Sci., Memorial Univ. of Newfoundland, St. John''s, Nfld., Canada ; Osheiba, A.M. ; Radwan, T.S. ; Abdin, E.S.

A method to analyze the steady-state performance of a stand-alone permanent magnet synchronous generator driven by a diesel engine is presented. The proposed method is based on equivalent d-q circuits and the phasor diagram of such a generator under steady-state conditions. A fixed capacitor-thyristor controlled reactor scheme is used to regulate the generator terminal voltage by controlling the thyristor ignition angle. Furthermore the overall system dynamics are modelled in terms of state variables and control inputs. Based on a reduced order linearized model, digital optimal state and output feedback controllers are designed by minimising a quadratic performance index using the dynamic programming technique. The objective of the controller is to maintain the load voltage and frequency constant under varying load conditions. The controller's effectiveness is assessed by examining the closed-loop system response to sudden load changes

Published in:

Energy Conversion, IEEE Transactions on  (Volume:11 ,  Issue: 2 )