Cart (Loading....) | Create Account
Close category search window
 

Robust mobility adaptive clustering scheme with support for geographic routing for vehicular ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goonewardene, R.T. ; Eng. & Design, Univ. of Sussex, Brighton ; Ali, F.H. ; Stipidis, E.

There are a number of critical problems related to road safety in intelligent transportation systems (ITS) caused by increased vehicle usage, urbanisation, population growth and density, and faster rates of movements of goods and people. It is envisaged that vehicular ad hoc networks (VANETs) will bring about a substantial change to the way our road transport operates to improving road safety and traffic congestion. A major challenge in VANETs is to provide real-time transfer of information between vehicles within a highly mobile environment. The authors propose a new clustering scheme named robust mobility adaptive clustering (RMAC) to strategically enable and manage highly dynamic VANETs for future ITS. It employs a novel node precedence algorithm to adaptively identify the nearby 1-hop neighbours and select optimal clusterheads based on relative node mobility metrics of speed, locations and direction of travel. Furthermore, the zone of interest concept is introduced for optimised approach to the network structure such that each vehicular node maintains a neighbour table of nodes, beyond its communications range, that reflects the frequent changes on the network and provides prior knowledge of neighbours as they travel into new neighbourhoods. RMAC predominantly employs more reliable unicast control packets and supports geographic routing by providing accurate neighbour information crucial when making routing decisions in multi-hop geographic routing. It is shown by simulations that RMAC on IEEE802.11 ad hoc WLAN protocol is very effective in a highly dynamic VANETs environment, being robust on link failures, and having very high cluster residence times compared to the well known distributed mobility clustering scheme.

Published in:

Intelligent Transport Systems, IET  (Volume:3 ,  Issue: 2 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.