By Topic

Compression of MRI images using the discrete wavelet transform and improved parameter free Bayesian restoration techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Karras, D.A. ; Autom. Dept., Hellenic Open Univ., Athens

This paper suggests a novel MRI image compression scheme, using the discrete wavelet transformation (DWT) and an improved Bayesian restoration approach. The suggested methodology is based on preservation of important second order correlation (ldquotexturalrdquo) features of either DWT coefficients or image pixel intensities. While rival image compression methodologies utilizing the DWT apply it to the whole original image uniformly, the herein presented novel approach involves a sophisticated DWT application scheme. That is, different compression ratios are applied to the wavelet coefficients belonging in the different regions of interest, in which either each wavelet domain band of the transformed image or the image itself is clustered, respectively, employing textural descriptors as criteria. Restoration of the original MRI image from its corresponding regions of interest compressed images involves the inverse DWT and a sophisticated Bayesian restoration approach which does not require user defined parameters, since all parameters are subject to the same optimization process. An experimental study is conducted to qualitatively assessing all approaches in comparison with the original DWT compression technique, when applied to a set of brain MRI images.

Published in:

Imaging Systems and Techniques, 2009. IST '09. IEEE International Workshop on

Date of Conference:

11-12 May 2009