By Topic

Analog floating-point BiCMOS sampling chip and architecture of the BaBar CsI calorimeter front-end electronics system at the SLAC B-factory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haller, G.M. ; Linear Accel. Center, Stanford Univ., CA, USA ; Freytag, Dietrich R.

The design and implementation of an analog floating-point sampling integrated circuit for the BaBar detector at the SLAC B-Factory is described. The CARE (Custom Auto-Range Encoding) circuit is part of an 18-bit dynamic range sampling system with a 4-MHz waveform digitization rate for the CsI calorimeter. The architecture and methodology of the system are described. The CARE integrated circuit receives dual-range (gain of 1 and 32) 13-bit signals from the 18-bit range preamplifiers mounted directly on the CsI crystals and converts the input at a rate of 4 MHz to an auto-range floating-point format with a 10-bit analog mantissa and 2 digital range bits (for 4 ranges). Additional functions integrated on the chip are averaging and selection circuitry for signals originating from two independent diodes per crystal and range-selection overwrite circuitry. The circuit will be mounted within the detector structure and thus low power dissipation is essential. The circuit has been fabricated in a 1.2-μm BiCMOS process with polysilicon-to-polysilicon capacitors and polysilicon resistors. Measurement results are presented. One complete CARE channel dissipates 25 mW

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 3 )