Cart (Loading....) | Create Account
Close category search window

Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Qian ; Sch. of Comput. Sci., Nat. Univ. of Defense Technol., Changsha ; Zhonghai Lu ; Wenhua Dou

In packet-switched network-on-chip, computing worst-case delay bounds is crucial for designing predictable and cost-effective communication systems but yet an intractable problem due to complicated resource sharing scenarios. For wormhole networks with credit-based flow control, the existence of cyclic dependency between flit delivery and credit generation further complicates the problem. Based on network calculus, we propose a technique for analyzing communication delay bounds for individual flows in wormhole networks. We first propose router service analysis models for flow control, link and buffer sharing. Based on these analysis models, we obtain a buffering-sharing analysis network, which is open-ended and captures both flow control and link sharing. Furthermore, we compute equivalent service curves for individual flows using the network contention tree model in the buffer-sharing analysis network, and then derive their delay bounds. Our experimental results verify that the theoretical bounds are correct and tight.

Published in:

Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium on

Date of Conference:

10-13 May 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.