By Topic

Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gadoue, S.M. ; Dept. of Electr. Eng., Alexandria Univ., Alexandria, Egypt ; Giaouris, D. ; Finch, J.W.

A new method is described which considerably improves the performance of rotor flux model reference adaptive system (MRAS)-based sensorless drives in the critical low and zero speed regions of operation. It is applied to a vector-controlled induction motor drive and is experimentally verified. The new technique uses an artificial neural network (NN) as a rotor flux observer to replace the conventional voltage model. This makes the reference model free of pure integration and less sensitive to stator resistance variations. This is a radically different way of applying NNs to MRAS schemes. The data for training the NN are obtained from experimental measurements based on the current model avoiding voltage and flux sensors. This has the advantage of considering all drive nonlinearities. Both open- and closed-loop sensorless operations for the new scheme are investigated and compared with the conventional MRAS speed observer. The experimental results show great improvement in the speed estimation performance for open- and closed-loop operations, including zero speed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 8 )