By Topic

Transforming Traditional Iris Recognition Systems to Work in Nonideal Situations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Zhou ; Electr. & Comput. Eng. Dept., Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, IN, USA ; Yingzi Du ; Belcher, C.

Under a nonideal situation, the image quality may vary. As a result, the traditional iris recognition systems would not work well. However, these kinds of iris recognition systems have been widely deployed in law enforcement and homeland security. It will be desirable to transform the traditional systems to perform in nonideal situations without a costly update. In this paper, we propose a method that upgrades the traditional iris recognition system to work on nonideal situations. The proposed method takes into consideration not only the effect of image quality but also the segmentation accuracy. It employs video-based image-processing techniques to quickly identify and eliminate the bad quality images from iris videos for further processing. The proposed method is tested on public databases using in-house recognition algorithms and also evaluated using a commercialized system. The research results show that the proposed methods can be used to improve the performance of iris recognition systems in a nonideal situation.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 8 )