By Topic

FDTD Implementation and Application of High Order Impedance Boundary Condition Using Rational Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong-Xing Zheng ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Kwok Wa Leung

An algorithm is proposed for the implementation of the high-order surface impedance boundary condition using the finite-difference time-domain method. The surface impedance function of a lossy medium is approximated by a series of rational functions in the Laplace domain, whereas the dyadic differential operator is approximated by a second-order power series. By assuming that the fields are piecewise linear, the time-domain convolution integrals are computed using a recursive formula. The impedance function of a coating layer is approximated by a third-order power series. The algorithm can be applied to scattering problems of a three-dimensional coating for both vertically and horizontally polarized waves. The advantage of the proposed method is that the result can be applied to media of arbitrary conductivities, with a wide range of incident angles from zero to graze. Some numerical examples are given to substantiate the theory.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:57 ,  Issue: 8 )