By Topic

Vision-Based, Distributed Control Laws for Motion Coordination of Nonholonomic Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Moshtagh, N. ; Gen. Robot., Autom., Sensing, & Perception Lab., Univ. of Pennsylvania, Philadelphia, PA, USA ; Michael, Nathan ; Jadbabaie, A. ; Daniilidis, K.

In this paper, we study the problem of distributed motion coordination among a group of nonholonomic ground robots. We develop vision-based control laws for parallel and balanced circular formations using a consensus approach. The proposed control laws are distributed in the sense that they require information only from neighboring robots. Furthermore, the control laws are coordinate-free and do not rely on measurement or communication of heading information among neighbors but instead require measurements of bearing, optical flow, and time to collision, all of which can be measured using visual sensors. Collision-avoidance capabilities are added to the team members, and the effectiveness of the control laws are demonstrated on a group of mobile robots.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )