By Topic

Ultrafast Laser Pulses to Detect and Generate Fast Thermomechanical Transients in Matter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Giannetti, Claudio ; Dept. of Math. & Phys., Univ. Cattolica, Brescia, Italy ; Banfi, F. ; Nardi, D. ; Ferrini, Gabriele
more authors

The use of femtosecond laser pulses to impulsively excite thermal and mechanical transients in matter has led, in the last years, to the development of picosecond acoustics. Recently, the pump-probe approach has been applied to nano-engineered materials to optically generate and detect acoustic waves in the gigahertz-terahertz frequency range. In this paper, we review the latest advances on ultrafast generation and detection of thermal gradients and pseudo-surface acoustic waves in 2-D lattices of metallic nanostructures. Comparing the experimental findings to the numeric analysis of the full thermomechanical problem, these materials emerge as model systems to investigate both the mechanical and thermal energy transfer at the nanoscale. The sensitivity of the technique to the nanostructure mass and shape variations, coupled with the phononic crystal properties of the lattices, opens the way to a variety of applications ranging from hypersonic waveguiding to mass sensors with femtosecond time resolution.

Published in:

Photonics Journal, IEEE  (Volume:1 ,  Issue: 1 )