Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Rapid Dynamic Image Registration of the Beating Heart for Diagnosis and Surgical Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xishi Huang ; Imaging Res. Labs., Robarts Res. Inst., London, ON, Canada ; Jing Ren ; Guiraudon, G. ; Boughner, D.
more authors

Dynamic cardiac magnetic resonance imaging (MR) and computed tomography (CT) provide cardiologists and cardiac surgeons with high-quality 4-D images for diagnosis and therapy, yet the effective use of these high-quality anatomical models remains a challenge. Ultrasound (US) is a flexible imaging tool, but the US images produced are often difficult to interpret unless they are placed within their proper 3-D anatomical context. The ability to correlate real-time 3-D US volumes (RT3D US) with dynamic MR/CT images would offer a significant contribution to improve the quality of cardiac procedures. In this paper, we present a rapid two-step method for registering RT3D US to high-quality dynamic 3-D MR/CT images of the beating heart. This technique overcomes some major limitations of image registration (such as the correct registration result not necessarily occurring at the maximum of the mutual information (MI) metric) using the MI metric. We demonstrate the effectiveness of our method in a dynamic heart phantom (DHP) study and a human subject study. The achieved mean target registration error of CT+US images in the phantom study is 2.59 mm. Validation using human MR/US volumes shows a target registration error of 1.76 mm. We anticipate that this technique will substantially improve the quality of cardiac diagnosis and therapies.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 11 )