By Topic

Noise Estimation in Magnitude MR Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maitra, R. ; Dept. of Stat., Iowa State Univ., Ames, IA, USA ; Faden, D.

Estimating the noise parameter in magnitude magnetic resonance (MR) images is important in a wide range of applications. We propose an automatic noise estimation method that does not rely on a substantial proportion of voxels being from the background. Specifically, we model the magnitude of the observed signal as a mixture of Rice distributions with common noise parameter. The expectation-maximization (EM) algorithm is used to estimate all parameters, including the common noise parameter. The algorithm needs initializing values for which we provide some strategies that work well. The number of components in the mixture model also needs to be estimated en route to noise estimation and we provide a novel approach to doing so. Our methodology performs very well on a range of simulation experiments and physical phantom data. Finally, the methodology is demonstrated on four clinical datasets.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 10 )