Cart (Loading....) | Create Account
Close category search window
 

Compressive-Projection Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fowler, J.E. ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA

Principal component analysis (PCA) is often central to dimensionality reduction and compression in many applications, yet its data-dependent nature as a transform computed via expensive eigendecomposition often hinders its use in severely resource-constrained settings such as satellite-borne sensors. A process is presented that effectively shifts the computational burden of PCA from the resource-constrained encoder to a presumably more capable base-station decoder. The proposed approach, compressive-projection PCA (CPPCA), is driven by projections at the sensor onto lower-dimensional subspaces chosen at random, while the CPPCA decoder, given only these random projections, recovers not only the coefficients associated with the PCA transform, but also an approximation to the PCA transform basis itself. An analysis is presented that extends existing Rayleigh-Ritz theory to the special case of highly eccentric distributions; this analysis in turn motivates a reconstruction process at the CPPCA decoder that consists of a novel eigenvector reconstruction based on a convex-set optimization driven by Ritz vectors within the projected subspaces. As such, CPPCA constitutes a fundamental departure from traditional PCA in that it permits its excellent dimensionality-reduction and compression performance to be realized in an light-encoder/heavy-decoder system architecture. In experimental results, CPPCA outperforms a multiple-vector variant of compressed sensing for the reconstruction of hyperspectral data.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.