By Topic

A Robust Chinese Remainder Theorem With Its Applications in Frequency Estimation From Undersampled Waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaowei Li ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE, USA ; Hong Liang ; Xiang-Gen Xia

The Chinese remainder theorem (CRT) allows to reconstruct a large integer from its remainders modulo several moduli. In this paper, we propose a robust reconstruction algorithm called robust CRT when the remainders have errors. We show that, using the proposed robust CRT, the reconstruction error is upper bounded by the maximal remainder error range named remainder error bound, if the remainder error bound is less than one quarter of the greatest common divisor (gcd) of all the moduli. We then apply the robust CRT to estimate frequencies when the signal waveforms are undersampled multiple times. It shows that with the robust CRT, the sampling frequencies can be significantly reduced.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 11 )