By Topic

Calibration and Characterization of Self-Powered Floating-Gate Usage Monitor With Single Electron per Second Operational Limit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chenling Huang ; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA ; Nizar Lajnef ; Shantanu Chakrabartty

Self-powered monitoring refers to a signal processing technique where the computational power is harvested directly from the signal being monitored. In this paper, we present the design and calibration of a CMOS event counter for long-term, self-powered mechanical usage monitoring. The counter exploits a log-linear response of the hot-electron injection process on a floating-gate transistor when biased in weak-inversion. By configuring an array of floating-gate injectors to respond to different amplitude levels of the input signal, a complete analog processor has been designed that implements a level counting algorithm, which is widely used in mechanical usage monitoring. Measured results from a fabricated prototype in a 0.5-??m CMOS process demonstrate that the processor can sense, store and compute over 105 usage cycles with an injection limit approaching one single electron per second and with a counting resolution of 5 bits. This paper also presents a calibration algorithm that is used for compensating the variations which arise due to device mismatch, power supply and temperature fluctuations. The maximum current rating of the fabricated analog processor has been measured to be less than 160 nA making it ideal for practical self-powered sensing applications.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 3 )