By Topic

An Inner-Loop Controller Guaranteeing Robust Transient Performance for Uncertain MIMO Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juhoon Back ; Dept. of Inf. & Control Eng., Kwangwoon Univ., Seoul, South Korea ; Hyungbo Shim

An output-feedback controller has been recently proposed that has the following features: 1) it is an inner-loop controller so that it can be added on the existing closed-loop system working in harmony with a pre-designed (possibly non-robust) outer-loop controller; 2) it robustifies the closed-loop system in a way that the uncertain plant under external disturbance behaves like a disturbance-free nominal plant; and 3) it recovers the trajectory of the nominal closed-loop system in time domain. However, it is restricted to the single-input-single-output nonlinear systems. In this technical note, we extend this result for a class of multi-input-multi-output (MIMO) nonlinear systems having the same number of inputs and outputs. The tools used in this synthesis are the singular perturbation theory and the multi-variable circle criterion. An example shows the effectiveness of the proposed method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 7 )