By Topic

Development and characterization of zone melt growth GaAs for gamma-ray detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
King, S.E. ; US Naval Res. Lab., Washington, DC, USA ; Dietrich, H.B. ; Henry, R.L. ; Katzer, D.S.
more authors

GaAs is a potentially attractive material for room temperature X-ray and γ-ray spectrometers. To date, the only high resolution GaAs devices were produced by epitaxial growth. The usefulness of detectors made from bulk grown semi-insulating (SI) GaAs has been limited by low charge collection efficiency caused, it is believed, by the high density of EL2 deep donor defects. Vertical zone melt (VZM) growth of GaAs has recently been developed at the Naval Research Laboratory. Zone refining and zone leveling techniques were used with VZM to reduce the level of impurities and the EL2 defects in bulk SI-GaAs. Schottky barrier and PIN diodes have been fabricated from the newly grown material. These devices were characterized using α particles and γ-rays. In this paper, the measurements and analysis of the first VZM GaAs devices are presented and compared with commercially available GaAs. The intent is to test the hypothesis that high purity, low defect GaAs material growth could lead to improved radiation detectors

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 3 )