By Topic

HOLMES: Effective statistical debugging via efficient path profiling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chilimbi, T.M. ; Microsoft Res. Redmond, Redmond, WA ; Liblit, B. ; Mehra, K. ; Nori, A.V.
more authors

Statistical debugging aims to automate the process of isolating bugs by profiling several runs of the program and using statistical analysis to pinpoint the likely causes of failure. In this paper, we investigate the impact of using richer program profiles such as path profiles on the effectiveness of bug isolation. We describe a statistical debugging tool called HOLMES that isolates bugs by finding paths that correlate with failure. We also present an adaptive version of HOLMES that uses iterative, bug-directed profiling to lower execution time and space overheads. We evaluate HOLMES using programs from the SIR benchmark suite and some large, real-world applications. Our results indicate that path profiles can help isolate bugs more precisely by providing more information about the context in which bugs occur. Moreover, bug-directed profiling can efficiently isolate bugs with low overheads, providing a scalable and accurate alternative to sparse random sampling.

Published in:

Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on

Date of Conference:

16-24 May 2009