By Topic

Path Clearance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maxim Likhachev ; University of Pennsylvania ; Anthony Stentz

In military scenarios, agents (i.e., troops of soldiers, convoys, and unmanned vehicles) may often have to traverse environments with only a limited intelligence about the locations of adversaries. We study a particular instance of this problem that we refer to as path clearance problem.This article presents a survey of our work on scalable and suitable for real-time use approaches to solving the path clearance problem. In particular, in the first part of the article, we show that the path clearance problem exhibits clear preferences on uncertainty. It turns out that these clear preferences can be used to develop an efficient algorithm called probabilistic planning with clear preferences (PPCP). The algorithm is anytime usable, converges to an optimal solution under certain conditions, and scales well to large-scale problems. We briefly describe the PPCP algorithm and show how it can be used to solve the path clearance problem when no scouts are present. In the second part of the article, we show several strategies for how to use the PPCP algorithm in case multiple scouting unmanned aerial vehicles (UAVs) are available. The experimental analysis shows that planning with PPCP results in a substantially smaller execution cost than when ignoring uncertainty, and employing scouts can decrease this execution cost even further.

Published in:

IEEE Robotics & Automation Magazine  (Volume:16 ,  Issue: 2 )