By Topic

Temporally consistent dense depth map estimation via Belief Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cigla, C. ; Dept. of Electr. & Electron. Eng., M.E.T.U ; Alatan, A.A.

A method for estimating temporally and spatially consistent dense depth maps in multiple camera setups is presented which is important for reduction of perception artifacts in 3D displays. For this purpose, initially, depth estimation is performed for each camera with the piece-wise planarity assumption and Markov Random Field (MRF) based relaxation at each time instant independently. During the relaxation step, the consistency of depth maps for different cameras is also considered for the reliability of the models. Next, temporal consistency of the depth maps is achieved in two steps. In the first step, median filtering is applied for the static or background pixels, whose intensity levels are constant in time. Such an approach decreases the number of inconsistent depth values significantly. The second step considers the moving pixels and MRF formulation is updated by the additional information from the depth maps of the consequent frames through motion compensation. For the solution of the MRF formulation for both spatial and temporal consistency, Belief Propagation approach is utilized. The experiments indicate that the proposed method provide reliable dense depth map estimates both in spatial and temporal domains.

Published in:

3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2009

Date of Conference:

4-6 May 2009