By Topic

Relating intensities with three-dimensional facial shape using partial least squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Castelan, M. ; Robot. & Adv. Manuf. Group, Centro de Investig. y Estudios Av. del I.P.N., Ramos Arizpe ; Van Horebeek, J.

The authors apply partial least squares regression to predict three-dimensional (3D) face shape from a single image. PLS describes the relationship between independent (intensity images) and dependent (3D shape) variables by seeking directions in the space of independent variables that are associated with large variations in the space of dependent variables. We use this idea to construct statistical models of intensity and 3D shape that capture strongly linked variations in both spaces. This decomposition leads to the construction of two different models that capture common variations in 3D shape and intensity. Using the intensity model, a set of parameters is obtained from out-of-training intensity examples. These intensity parameters can then be used directly in the 3D shape model to approximate facial shape. Experiments show that prediction is achieved with reasonable accuracy, improving results obtained through canonical correlation analysis.

Published in:

Computer Vision, IET  (Volume:3 ,  Issue: 2 )