By Topic

Gait recognition based on multiple views fusion of wavelet descriptor and human skeleton model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dong Ming ; Dept. of Biomed. Eng., Tianjin Univ., Tianjin ; Cong Zhang ; Yanru Bai ; Baikun Wan
more authors

Gait recognition is a relatively new subfield in biometric recognition, which attempts to recognize people from the way they walk or run. This paper discusses silhouette-based feature descriptor. Human silhouette geometry is generated by boundary tracking approach and resampled to a normalized format. Boundary-centroid distance is proposed to describe gait modality. Then, we apply wavelet transform to boundary-centroid distance, and extract wavelet descriptor. At the same time, we obtain the human skeleton model and extract bodys dynamic parameters to express gait modality. We carry out human identification based on SVM using the two kinds of gait feature. The performances based on the two features are compared. Multiple feature fusion and multiple views fusion are carried out and the recognition results demonstrate that the performance of multiple features and multiple views recognition is better than any single feature and single view recognition.

Published in:

Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009. VECIMS '09. IEEE International Conference on

Date of Conference:

11-13 May 2009