By Topic

Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soon-Jo Chung ; Iowa State Univ., Ames, IA ; Jean-Jacques E. Slotine

Concurrent synchronization is a regime where diverse groups of fully synchronized dynamic systems stably coexist. We study global exponential synchronization and concurrent synchronization in the context of Lagrangian systems control. In a network constructed by adding diffusive couplings to robot manipulators or mobile robots, a decentralized tracking control law globally exponentially synchronizes an arbitrary number of robots, and represents a generalization of the average consensus problem. Exact nonlinear stability guarantees and synchronization conditions are derived by contraction analysis. The proposed decentralized strategy is further extended to adaptive synchronization and partial-state coupling.

Published in:

IEEE Transactions on Robotics  (Volume:25 ,  Issue: 3 )