By Topic

Novel synthesis design of a 3-DOF silicon piezoresistive micro accelerometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tran, T.D. ; MEMS & Microsyst. Dept., VNUH ; Nguyen, M.D. ; Nguyen, L.T. ; Huynh, T.H.
more authors

This paper presents the novel synthesis design of a three-degree of freedom silicon piezoresistive accelerometer. The purpose of this novel synthesis design is to achieve the high performance device. The design synthesis has been performed based on considerations of mechanical and electronics sensitivities, noise and thermal effects, respectively. The mechanical sensitivity is optimized due to combination of a FEM software and a MNA one. The electronics sensitivity, noise and thermal effect can be determined by thermal, mechanical and piezoresistive coupled-field simulations. The dimension of sensor is as small as 1.5 mm2, so it is suitable for many immerging applications.

Published in:

Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on

Date of Conference:

5-8 Jan. 2009