Cart (Loading....) | Create Account
Close category search window
 

High-Temperature Operation of 1.26- \mu m Ridge Waveguide Laser With InGaAs Metamorphic Buffer on GaAs Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Arai, M. ; Nippon Telegraph & Telephone (NTT) Photonics Labs., NTT Corp., Atsugi ; Nakashima, Kiichi ; Fujisawa, T. ; Tadokoro, T.
more authors

In this paper, we have newly developed an InGaAs metamorphic buffer on a GaAs substrate grown by metal-organic vapor-phase epitaxy, and realized a fully relaxed quasi-InGaAs substrate with low threading dislocation density. We have also successfully developed a 1.3-mu m-range ridge waveguide laser with InGaP upper cladding and InAlGaAs lower cladding layers. This laser has achieved the highest continuous-wave operating temperature (173degC) reported for a metamorphic laser. We measured the relaxation oscillation frequency from the relative intensity noise and undertook a 10-Gb/s direct modulation experiment.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 3 )

Date of Publication:

May-june 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.