Cart (Loading....) | Create Account
Close category search window
 

Nonlinear Dynamics of Semiconductor Lasers Under Repetitive Optical Pulse Injection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fan-Yi Lin ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu ; Shiou-Yuan Tu ; Chien-Chih Huang ; Shu-Ming Chang

In this paper, nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection are studied numerically. Different dynamical states, including pulsation and oscillation states, are found by varying the intensity and the repetition rate of the injection pulses. The laser is found to enter the chaotic pulsation (CP) states and chaotic oscillation (CO) states through individual period-doubling routes. Mapping and corresponding Lyapunov exponents of these dynamical states are plotted and examined in the parameter space. Moreover, the bandwidths of the chaos states found are investigated, where the bandwidths of the CP states observed at the strong injection regime are two to four times broader than the bandwidths of the CO states found at the weak injection regime. In this paper, frequency-locked states with different winding numbers, the ratio of the oscillation frequency, and the repetition frequency of the injection pulses are also studied. Both the cases for repetition frequency above and below the relaxation oscillation frequency are examined. The winding numbers of the frequency-locked states reveal a Devil's staircase structure, where a Farey tree showing the relations between the neighboring states is constructed.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 3 )

Date of Publication:

May-june 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.