By Topic

Atmospheric water-vapour effects on Spaceborne Interferometric SAR imaging: Data synergy and comparison with ground-based measurements and meteorological model simulations at urban scale

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

18 Author(s)
Pierdicca, N. ; DIE, Sapienza Univ. of Rome, Rome ; Rocca, F. ; Basili, P. ; Bonafoni, S.
more authors

Spaceborne interferometric synthetic aperture radar (InSAR) is a well established technique useful in many land applications, such as tectonic movements, landslide monitoring and digital elevation model extraction. One of its major limitations is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. On the other hand, these effects might be exploited, so as InSAR could become a tool for high-resolution water vapour mapping. This paper describes the approach and some preliminary results achieved in the framework of an ESA funded project devoted to the mitigation of the water vapour effects in InSAR applications. Although very preliminary, the acquired experimental data and their comparison give a first idea of what can be done to gather valuable information on water vapour, which play a fundamental role in weather prediction and radio propagation studies.

Published in:

Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on

Date of Conference:

23-27 March 2009