By Topic

Computer modeling of surfaces with arbitrary shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. F. Sarraga ; Gen. Motors Res. Lab., Warren, MI, USA

A detailed description is given of a local mathematical procedure for constructing a geometrically C/sup 1/ surface by interpolating a grid of cubic Bezier curves that meet in a quite general fashion (for example, they need not meet rectangularly). The constructed surface is a composite mosaic of independently parameterized tensor-product Bezier patches of different degrees (maximum of 6*6). Adjacent patches can be made either C/sup 1/ or C/sup 0/ continuous, as desired. The overall surface can have almost any shape that arises in practice, including the closed surfaces used in solid modeling. Because of its locality, the procedure can be applied at different times in different locations of a surface-to-be; for example, it can be used to combine preexisting smaller surfaces.<>

Published in:

IEEE Computer Graphics and Applications  (Volume:10 ,  Issue: 2 )