By Topic

Prominence Detection Using Auditory Attention Cues and Task-Dependent High Level Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalinli, O. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA ; Narayanan, S.

Auditory attention is a complex mechanism that involves the processing of low-level acoustic cues together with higher level cognitive cues. In this paper, a novel method is proposed that combines biologically inspired auditory attention cues with higher level lexical and syntactic information to model task-dependent influences on a given spoken language processing task. A set of low-level multiscale features (intensity, frequency contrast, temporal contrast, orientation, and pitch) is extracted in parallel from the auditory spectrum of the sound based on the processing stages in the central auditory system to create feature maps that are converted to auditory gist features that capture the essence of a sound scene. The auditory attention model biases the gist features in a task-dependent way to maximize target detection in a given scene. Furthermore, the top-down task-dependent influence of lexical and syntactic information is incorporated into the model using a probabilistic approach. The lexical information is incorporated by using a probabilistic language model, and the syntactic knowledge is modeled using part-of-speech (POS) tags. The combined model is tested on automatically detecting prominent syllables in speech using the BU Radio News Corpus. The model achieves 88.33% prominence detection accuracy at the syllable level and 85.71% accuracy at the word level. These results compare well with reported human performance on this task.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 5 )