By Topic

Autonomous reconfiguration and control in directional mobile ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Milner, S. ; Univ. of Maryland, College Park, MD ; Llorca, J. ; Davis, C.

Requirements for increasingly complex, scalable, and dynamic wireless networks, which provide assured end-to-end broadband connectivity in a wide range of scenarios, have been emerging. In this context, we have been investigating wireless technologies that provide extremely high data rates through the use of narrow-beam free space optical (FSO) and/or radio-frequency (RF) point-to-point links. The use of directional wireless communications to form flexible backbone networks, which provide broadband connectivity to capacity- limited wireless networks or hosts using omnidirectional transmission, promises to circumvent the scalability limitations of traditional flat wireless networks. We have been investigating backbones of base stations, in which topologies and mobility can be controlled for purposes of assured communications. We refer to these as Directional Mobile Ad Hoc Networks (DMANET). Our work considers the use of topology control to assure robust end-to-end broadband connectivity in heterogeneous and dynamic environments. Topology control is defined as the autonomous network capability to dynamically reconfigure its physical topology. In the case of directional wireless backbone (DWB) networks, the physical topology can be reconfigured through: Autonomous 1) Topology Reconfiguration (ATR): dynamic redirection of point-to-point links using heuristic algorithms for creating new topologies and pointing, acquisition and tracking of links. Topology reconfiguration algorithms, which compute minimum energy configurations by determining optimal link assignments between backbone nodes, are presented. The pointing, acquisition and tracking (PAT) process needed to physically redirect point-to-point links is also addressed. 2) Mobility Control (MC): dynamic reposition and "morphing" of backbone nodes. In this model, communication links define physical interactions between network nodes. Control mechanisms are designed to mimic physical systems' natural reaction to exter- al excitations, which drive the network topology to minimum energy configurations Using both ATR and MC, networks are completely selforganizing. They can autonomously adapt their physical topology to maximize coverage to terminals or hosts while maintaining robust backbone connectivity. In this paper, we present the design, implementation and evaluation of our novel approaches to autonomous reconfiguration and control.

Published in:

Circuits and Systems Magazine, IEEE  (Volume:9 ,  Issue: 2 )